We Support GivePower, Would you like to do the same?
|
|
Off-grid living refers to the practice of living independently from the traditional power grid by generating one’s own electricity, water, and other necessities. This can be achieved through a variety of methods, such as solar power, wind power, hydropower, and even alternative energy solutions like biomass or geothermal.
One of the main benefits of off-grid living is the ability to be self-sufficient and not rely on the power grid or other public utilities. This can be especially appealing for those who live in remote or rural areas where access to the power grid is limited. Additionally, off-grid living can also be a more sustainable and environmentally-friendly lifestyle choice, as it reduces the dependence on fossil fuels and reduces the carbon footprint.
However, off-grid living also has its challenges. It can be costly to set up and maintain an off-grid system, and it requires a significant level of knowledge and expertise to install and maintain the system. Additionally, off-grid living often means living with limited resources and without the luxury of modern conveniences such as air conditioning, dishwashers, or other high-energy-consuming appliances.
In order to successfully live off-grid, it’s important to carefully plan and design the system. It’s also important to be aware of local regulations, as there may be legal restrictions or permit requirements for installing off-grid systems.
In conclusion, off-grid living is the practice of living independently from the traditional power grid by generating one’s own electricity, water, and other necessities. This can be achieved through a variety of methods such as solar power, wind power, hydropower, and alternative energy solutions. Living off-grid offers the benefits of self-sufficiency and sustainability but also comes with its own set of challenges like cost, maintenance, and limited resources. It is important to plan and design the system accordingly and be aware of local regulations.
A future landscape for many might include an electric vehicle powered by a solar grid that can run electricity for a home when the power goes out.
But it’s not that futuristic for one New Brunswick man. In fact, it’s his reality.
Cory Allen, who lives in Nasonworth, N.B., switched to electric vehicles in 2019, beginning with an SUV.
He said he still had a gas car in the garage at the time because, like many people, he was skeptical.
More recently, he got an electric pickup truck, the Ford F-150 Lightning. He said it has some “really cool” features, including being able to “back feed” electricity into the house.
In the event of a power outage, Allen’s automatic standby generator would kick in, which he said would cost around $6 or $7 per hour to run.
But then he could go to the garage and flick a transfer switch that would allow the truck to power the house. He said the truck can power the house for around two days before needing a charge.
Not only that but the truck is charged using solar energy.
Allen had a 12.8-kilowatt array of solar panels installed that feed into the garage where vehicles are charged. He said the truck takes around eight hours to go from zero power to a full charge.
He said he went with a grid-tied solar system for his home, which is different than a standard setup, so there’s no battery component.
He said when the vehicles are charging, they will take all of the solar energy that’s being produced. But when they are not actively using all of the solar energy, the meter will run backward and the power will be banked for when they need it, Allen said.
His panels are on a wooden frame in the field by his house. That was more cost-effective than putting them on the roof of his home since the field has a better southern exposure, which means increased sunlight.
The idea for the setup originally came from Epic Energy, a New Brunswick solar energy company, when Allen approached them about a solar array.
“The electrician came over and we began talking and … he just offered so many of these awesome ideas,” said Allen.
Richard Knappe, president of Epic Energy, said there isn’t a lot of public knowledge about using solar to power electric vehicles, but they have had conversations with interested clients.
He said there also aren’t many vehicles that have the necessary technology.
“There’s probably going to be a huge demand in the future,” said Knappe. “But right now, we’re pretty limited to the F-150 Ford, and the Hyundai IONIQ 5.”
When it comes to setting up these types of systems, the wiring does get pretty complicated, he said. Knappe has an electrician who does this work, but he said it is hard to find electricians with that particular knowledge.
Allen said having an electric vehicle is also a long-term financial benefit for him.
He said the truck is expensive upfront at roughly $100,000. Then there is around $11,000 for the solar array and about $7,000 for the electrical work.
But the cost makes sense in the long run, Allen said.
He said as a small business owner who travels a lot, he was spending a lot on gas to fuel a pickup truck.
But without having to buy gas, he said his monthly payments come out to less since he’s only making payments on the truck.
Allen said one of the things that makes him feel good about his setup is the carbon footprint.
He said there is a heavy carbon footprint at the outset for the production of electric vehicles and solar panels. But, after using them for around five years, he said his household could be net zero.
He said environmental concerns are always something he tries to keep on top of his mind.
“I often joked, ‘Well, at least I’m offsetting the gas I put through the truck with the car,'” said Allen. “But now we have the electric car and the truck, so I don’t even have to worry about that joke anymore.”
Off the grid living is becoming more and more popular, and with it comes an increasing need for portable energy. Vancouver’s own Royer Batteries has created the smallest and lightest Lithium battery – The Micro Smart Heated Battery – that North America has seen, that’s the perfect solution to energy needs, whether for solar off-grid homes, RVs, van-life, or marine usage. Coming with many new advantages in comparison to its old alternative, the lead acid battery, the Canadian assembled Micro Battery uses LiFePO4 chemistry and trumps it in every category while setting the stage for the future for how we store electricity.
The lead acid battery has been the traditional choice for off-grid power usage for many years, but throughout it, the battery has had faults that leave users with more stress over their electricity. Though there are different types of lead acid batteries with different strengths, the weaknesses of them all remain the same. Firstly, the lead acid battery can only use 50% (or less) of it’s rated capacity (Ah) for each cycle, leaving less usable power than advertised. For lead acid battery users this means you don’t really get what you think, energy wise – you get half of it. Furthermore, if the lead acid battery isn’t charged on a strict schedule, the lack thereof will begin to damage the battery, before it’s even used all of its power.
Cycle life – the number of times a battery can be recharged – is another issue that could be improved when it comes to lead acid batteries. At about 1500 cycles, the lead acid battery will have lost 50% capacity. Though this may still seem like a lot of cycles, it’s important to note that how much usable KWh – Kilowatt-Hour – the battery can deliver is still being reduced each cycle, meaning even before the 50% capacity loss, the lead acid battery will not be able to deliver the same amount of power even halfway into its life cycle. Overall, weighing around 4-6x times more than lithium batteries, the lead acid battery is delivering sub-optimal power, low energy density, and high maintenance needs, without even delivering longevity.
With the Micro Battery, you are truly getting what you pay for. With 100% usable capacity or depth of discharge, it overcomes the deficits of the lead acid battery, and in turn revolutionized the way off grid power is stored. The battery does not need to be constantly recharged to maintain it’s life expectancy, nor does it have the same life cycle shortage as its alternative. In comparison to the lead acid battery which loses 50% capacity over 1500 cycles, the Micro Battery comes out on top, losing only 20% capacity over a minimum of 3000 cycles, and up to 5000 in most applications. It also doesn’t lose as much capacity every cycle, ensuring you are getting the optimal amount of electricity out of your battery, every time. Over the life-time, the Micro Battery will output over 10 times the amount of usable power, greatly increasing the amount of energy a user can get out of their battery. Although it cannot be charged in 0 degrees and below, nor discharged in -20 degrees and below, the Micro Battery was designed with a low consumption automatic built-in heater, to face its weaknesses head on.
The Micro Battery not only fixes the faults of its alternative but comes with new upgrades, as well. It comes with an app that connects to the battery with Bluetooth, enabling users to not only see if there are issues with their battery, but also better understand their energy usage. This app allows users to be more energy conscious, in addition to understanding how their battery really works. Furthermore, Each battery comes with a 10 year warranty but it can easily last you up to 25 years with relevant energy density still left. The Micro Battery is completely serviceable so parts are interchangeable and exchangeable; if there is an issue out of warranty it can be repaired simply.
This battery is likely going to take the market by storm. Even with other lithium-based batteries on the market, those batteries tend to have lower kWh, up to 50% larger, up to 50% heavier, as well as have less features. With the Micro Battery, the cells are square, optimizing space. Meanwhile, weighing in at only 59 pounds, the Micro 12V 310Ah Battery is the perfect solution for mobile applications, such as van-living. Although this battery costs on average 2 times more than its lead acid alternative, over the life-time of the LiFePO4 it will cost 5 times less money per Amp-hour used.
The Micro battery will truly revolutionize the way off-grid power is used and stored. Tyrone Royer, creator of the Micro Battery from Royer Batteries, reports on how he feels about his battery and its size, saying “I just love hearing ‘No way, you can’t fit that much power in there!’” At 59 pounds 100% capacity that can be cycled up to 10000 times in its lifetime, the Micro is the best new way to store energy.
The LiFePO4 battery began with John B. Goodenough and Arumugam Manthiram. They were the first to discover the materials employed in lithium-ion batteries. Anode materials are not very suitable for use in lithium-ion batteries. This is because they’re prone to early short-circuiting.
Scientists discovered that cathode materials are better alternatives for lithium-ion batteries. And this is very clear in the LiFePO4 battery variants. Fast-forward, increasing stability, conductivity – improving all sorts of things, and poof! LiFePO4 batteries are born.
Today, there are rechargeable LiFePO4 batteries everywhere. These batteries have many useful applications – they’re used in boats, solar systems, vehicles, and more. LiFePO4 batteries are cobalt-free and cost less than most of its alternatives (over time). It’s not toxic and it lasts longer. But we’ll get to that more soon. The future holds very bright prospects for the LiFePO4 battery.
But what makes the LiFePO4 battery better?
Now that we know what LiFePO4 batteries are, let’s discuss what makes LiFePO4 better than lithium-ion and other lithium batteries.
The LiFePO4 battery isn’t great for wearable devices like watches. Because they have a lower energy density compared to other lithium-ion batteries. That said, for things like solar energy systems, RVs, golf carts, bass boats, and electric motorcycles, it’s the best by far. Why?
Well, for one, the cycle life of a LiFePO4 battery is over 4x that of other lithium-ion batteries.
It’s also the safest lithium battery type on the market, safer than lithium-ion and other battery types.
And last but not least, LiFePO4 batteries can not only reach 3,000-5,000 cycles or more… They can reach 100% depth of discharge (DOD). Why does that matter? Because that means, with LiFePO4 (unlike other batteries) you don’t have to worry about over-discharging your battery. Also, you can use it for a longer period of time as a result. In fact, you can use a quality LiFePO4 battery for many years longer than other battery types. It’s rated to last about 5,000 cycles. That’s roughly 10 years. So the average cost over time is much better. That’s how LiFePO4 batteries stack up vs lithium-ion.
Here’s why LiFePO4 batteries are better than not just lithium-ion, but other battery types in general:
Lithium battery safety is important. The newsworthy “exploding” lithium-ion laptop batteries have made that clear. One of the most important advantages LiFePO4 has over other battery types is safety. LiFePO4 is the safest lithium battery type. It’s the safest of any type, actually.
Overall, LifePO4 batteries have the safest lithium chemistry. Why? Because lithium iron phosphate has better thermal and structural stability. This is something lead acid and most other battery types don’t have at the level LiFePO4 does. LiFePO4 is incombustible. It can withstand high temperatures without decomposing. It’s not prone to thermal runaway and will keep cool at room temperature.
If you subject a LiFePO4 battery to harsh temperatures or hazardous events (like short-circuiting or a crash) it won’t start a fire or explode. For those who use deep cycle LiFePO4 batteries every day in an RV, bass boat, scooter, or liftgate, this fact is comforting.
LiFePO4 batteries are already a boon to our planet because they’re rechargeable. But their eco-friendliness doesn’t stop there. Unlike lead acid and nickel oxide lithium batteries, they are non-toxic and won’t leak. You can recycle them as well. But you won’t need to do that often, since they last 5000 cycles. That means you can recharge them (at least) 5,000 times. In comparison, lead acid batteries last only 300-400 cycles.
You want a safe, non-toxic battery. But you also want a battery that’s going to perform well. These stats prove that LiFePO4 delivers all that and more:
Many factors weigh in to make LiFePO4 batteries better. Speaking of weighing–they are total lightweights. In fact, they’re almost 50% lighter than lithium manganese oxide batteries. They weigh up to 70% lighter than lead acid batteries.
When you use your LiFePO4 battery in a vehicle, this translates to less gas usage and more maneuverability. They are also compact, freeing up space on your scooter, boat, RV, or industrial application.
When it comes to LiFePO4 vs lithium ion, LiFePO4 is the clear winner. But how do LiFePO4 batteries compare to other rechargeable batteries on the market today?
Lead acid batteries may be a bargain at first, but they’ll end up costing you more in the long run. That’s because they need constant maintenance, and you must replace them more often. A LiFePO4 battery will last 2-4x longer, with zero upkeep needed.
Like LiFePO4 batteries, gel batteries don’t need frequent recharging. They also won’t lose charge while stored. Where do gel and LiFePO4 differ? A big factor is the charging process. Gel batteries charge at a snail’s pace. Also, you must disconnect them when 100% charged to avoid ruining them.
AGM batteries will do plenty of damage to your wallet, and are at high risk of becoming damaged themselves if you drain them past 50% capacity. Maintaining them can be difficult as well. LiFePO4 Ionic lithium batteries can be discharged completely with no risk of damage.
LiFePO4 technology has proven beneficial for a wide variety of applications. Here are a few of them:
Not at all! The LiFePO4 battery has a cycle life of over 4x that of lithium-ion polymer batteries.
Well, for starters, LiFePO4 batteries are incredibly efficient compared to traditional batteries. Not only that, they’re super-light and you can use most of your battery’s capacity without any problems. (You can only use roughly 50% with lead acid batteries. After that, the battery gets damaged.) So overall, yes, very much so – LiFePO4 batteries are great.
LiFePO4 batteries are the safest of lithium batteries, because they will not catch fire, and won’t even overheat. Even if you puncture the battery it will not catch fire. This is a massive upgrade over other lithium batteries, which can overheat and catch fire.
The LiFePO4 battery has the edge over lithium-ion, both in terms of cycle life (it lasts 4-5x longer), and safety. This is a key advantage because lithium-ion batteries can overheat and even catch fire, while LiFePO4 does not.
LiFePO4 batteries are usually more expensive on the front end, but cheaper long-term because they last so long. They cost more upfront because the materials used to build them are more expensive. But people still choose them over other batteries. Why? Because LiFePO4 has many advantages over other batteries. For example, they’re much lighter than lead acid and many other battery types. They’re also much safer, they last longer, and require no maintenance.
No. Lifepo4 has a number of distinct advantages over Lipo, and while both are lithium chemistries, they are not the same.
You can use LiFePO4 batteries for the same things you’d use lead acid, AGM or other traditional batteries for. For example, you can use them to power bass boats and other marine toys. Or RVs. Or solar setups, mobility scooters, and much more.
Nope. It’s actually quite a bit safer. And for a number of reasons, including the fact that LiFePO4 batteries don’t leak toxic fumes. And they don’t spill sulfuric acid like many other batteries (like lead acid.) And like we mentioned earlier, they don’t overheat or catch fire.
If your LiFePO4 batteries have a battery management system, it will prevent your battery from overcharging. Our Ionic batteries all have built-in battery management systems.
Life expectancy is one of the biggest perks, if not the biggest perk of LiFePO4. Our lithium batteries are rated to last around 5,000 cycles. That is 10 years or so (and often more), depending on usage of course. Even after those 5,000 cycles, our LiFePO4 batteries can still function at 70% capacity. And better still, you can discharge past 80% without a single issue. (Lead acid batteries tend to gas out when discharged past 50%.)
Power everywhere. Much more than just a battery and it is built in Canada. Complete customization, Portability, power, and convenience come together in this versatile power station. Optional 1000W pure sine wave inverter and MPPT/DC2DC charge controller make the Power N Go unmatched. Our smart Bluetooth BMS lets you know what’s going on at all times which comes standard with all units. LiFePO4 is some of the longest-lasting and safest lithium chemistries.
Features
The power station has a long list of features including an optional built-in 1000W (2000W peak) pure sine wave inverter to power all your AC devices on the go. Another option is the all-in-one 300W MPPT charge controller and 30A DC2DC converter and isolator. To plugin there is 1x SMH175 & 4x SMH50 Anderson connectors, 2x 12V automotive ports, 2x 2.1A USB. A hard cut-off switch and battery state indicator are built-in for quick disconnection and convenience.
Capacity
Using four of our high capacity 3.2V 310Ah prismatic cells translates into more reliability; fewer parts, fewer issues. Our cells are designed to use the full depth of discharge giving maximum capacity when required. You always have the option (through Bluetooth) to change the charging and discharging parameters to a 20%-90% cycle to extend the lifetime of the battery. Compared to lead-acid, lithium offers more than 2x more power per rated Ah as well as consistent voltage.
Cycle Life
If you use a full cycle daily, it will be 8-13.5 years until you realize a 20% capacity loss. This means with the 310Ah, after 3000 – 5000 cycles you would still have up to 248Ah of usable power. The battery can easily have a useful life of more than 10,000 cycles/25 years in most applications. This is the only battery you will need, which is why we include our 10-year warranty but do expect it to run much longer.
Smart BMS
Lithium batteries require a battery management system (BMS) to ensure proper voltage and temperature cut-offs. Separating our batteries with our smart Bluetooth BMS, you can set parameters of charging and discharging, monitor real-time usage, see available power left, and turn on and off all from your phone. At any time, you will know how much power you’re discharging or charging and how much you have left. The BMS has automatic high/low temp and voltage cut-offs to maximize your battery life. We use quality JBD BMS for our Power N Go power stations.
Temperature
LiFePO4 chemistry cannot be charged at 0 °C or discharged at -20 °C which is why our BMS disable these functions when low temperatures are detected. Depending on your battery location and climate, you may require your battery to work in colder weather. Our batteries can come with built-in automatic heating. The optional heater can keep the battery temperature above 0 °C to allow all functions to work in any weather. The heater uses very little power to keep everything warm.
Amp Rates
Our smart BMS is rated to output 150A continuous with a 300a peak (3 seconds) and charging up to 150A continuously. By paralleling units, you can multiply amperage rates by number of paralleled batteries. Please gauge your wiring accordingly to account for your expected loads.
Safety
The most important thing to all our batteries is safety. LiFePO4 is one of the safest lithium chemistries and will not catch on fire like other li-ion batteries. There is no venting or required maintenance with these batteries. Storage losses are under 3% per month so you can leave the battery dormant for long periods without issues.
Parallel/Series
Our Power N Go is capable of up to 4 series and 4 paralleled batteries. With series connections, the inverter or MPPT/DC2DC cannot be built in. If you require a specific voltage and Ah, please see our King-Pawn battery system for a single BMS option for multiple batteries. We also offer a more basic 4kWh option with terminals called the Tiny 12V. If you require more capacity, voltage, or anything else please contact us directly as we can do anything!
Documents
The VRFB is a type of rechargeable flow battery where rechargeability is provided by vanadium electrolyte (VE) dissolved in solution. The two tanks of Vanadium, one side containing V2+ and V3+ ions, the other side containing V4+ and V5+ ions, are separated by a thin proton exchange membrane. VRFBs consists of two tanks of vanadium electrolyte that flow adjacent to each other past a membrane and generate a charge by moving electrons back and forth during charging and discharging. This battery offers unlimited energy capacity simply by using larger electrolyte storage tanks. It can be left completely charged for long periods without losing capacity and maintenance is much simpler than other batteries. Pumps on both sides circulate the electrolyte.
The electron differential between the two cells generates electric power. Most batteries use two chemicals that change valence (or charge or redox state) and cross-contaminate and thus degrade over time. VRFBs utilize multiple valence states of vanadium as a single element to store and release charge. The VRFB has no cross-contamination like most batteries. The electrolyte in the catholyte and the anolyte consists of 100% vanadium ions. The ion-sensitive membrane separating both sides of the electrolyte tank allows only protons to pass. VRFBs are containerized, long duration, non-flammable, compact, reusable over infinite cycles, and last more than 20 years.
On these hot summer days, the sun shines directly on your roof and has a heating effect that permeates into your home. Is it true that solar panels can cool your home? Absolutely!
A study conducted by the UC San Diego Jacobs School of Engineering completed tests with various solar panel layouts and tested roof temperatures with thermal imaging.
Researchers discovered that exterior roof temperatures were 5 degrees Fahrenheit cooler with solar panels, as the panels blocked direct sunlight from hitting the roof. Also, the solar panels contributed to lowering roof temperatures because the panels themselves were reflecting the sun’s heat away from the building. Overall, the solar panels “reduced the amount of heat reaching the roof by about 38%!”
In addition to cooling your home during the Summer, solar panels also add an insulation value in the Winter by helping to keep warm air inside your home. How great is that? These factors alone make your home more energy-efficient and are estimated to provide a 5% payback of the solar panel system cost!
To learn more, visit our page for more information.
Do you have more questions about solar panels? Contact us today as we’re happy to answer your questions and even provide you with a Free Estimate!
If you frequently use utility vehicles such as pick-up trucks or golf carts, you need a sustainable source of battery power to help keep them moving and operational. That’s where the importance of lithium batteries can most benefit you. At Hub Power, we provide deep-cycle lithium batteries in BC and are a prime distributor of solar and power conversion products.
We also specialize in solar on-grid packages in BC and will detail the benefits of deep cycle lithium batteries for your utility vehicle. We’ll go over what exactly these batteries are and how they work, as well as their duration of the operation.
Deep cycle batteries are premium, lightweight, and very efficient batteries that offer the most powerful options for different required usages as they’re designed to produce a steady power output over a long period of time. After the discharge has been used significantly, it’s recharged to complete the cycle. Some of the features include rapid charging, deeper charging cycles, continuous charge, and discharge capability.
How these deep cycle batteries work is through the use of lithium iron phosphate that offers improved discharge and charges efficiency. This helps with the battery’s ability for deep power cycles. While deep cycle batteries are often priced with a large price tag, they can deliver great value and benefits for your utility vehicles over time. Moreover, these types of batteries have a longer service life compared to other lead-acid or lower quality lithium batteries and require little or no maintenance. It’s overall a worthwhile investment for people managing different vehicles and a great long-term solution.
So how long do deep cycle batteries last? As we mentioned before, they can power your utility vehicle for a long time. Depending on how you use it and how powerful the battery is, the life cycle can last you several charging cycles. You also have to consider temperatures and other factors before you use the battery.
Deep cycle batteries currently average around 2,000-4,000 charging cycles at 80% of rated capacity. This is better in comparison to the 400-1,500 cycles you would get from lead-acid batteries. By a rough estimate, deep cycle lithium batteries can last you five years or more of functional operation in contrast to just two years from lead-acid batteries. They also need to be maintained and may require water replacement to avoid serious structural damage in the future. Otherwise, you may risk shortening their lifespan.
Standard lithium batteries and deep cycle batteries have many similarities and differences and both have their strengths and weaknesses. We’ve gone over a few of them already, but it’s worth repeating if you want to base your decision on the details.
Deep cycle batteries weigh 30% less than lithium acid batteries and can reach 100% charge and discharge with around 80% of great efficiency. They also have longer charging cycles than lithium batteries and offer strong stability in terms of voltage power.
While lithium batteries are cheaper than deep cycle batteries, investing in the latter can greatly benefit you in the long run. Moreover, lithium batteries and other similar products have dangerous lead content that can be dangerous for yourself and the environment. Deep cycle batteries use sustainable lithium technology that is cleaner and safer for the environment than other products.
All in all, you will find many uses and benefits if you consider purchasing deep-cycle lithium batteries for your utility vehicles. While it may be an investment, you can be assured that you’ll get great results from your purchase.
Tags:
AC TO DC CONVERTERS AUTOMOTIVE STARTING BATTERIES BC BACKUP POWER BATTERIES DISTRIBUTOR BATTERY CHARGERS BURNABY BC BATTERY MONITORING BC BC | SOLAR PANELS AND KITS CRITICAL BACKUP POWER PRODUCTS DEEP CYCLE BATTERIES BURNABY BC DEEP CYCLE LITHIUM BATTERIES BC GOLF CART LITHIUM BATTERIES BC LITHIUM BATTERY FOR A SCOOTER IN BC LITHIUM SOLAR BATTERIES MARINE MARINE BATTERIES BC MARINE STARTING BATTERY BC MOTIVE BATTERIES MOTORHOME SOLAR BC OFF-GRID CABINS OFF-GRID HOME BATTERIES BC POWER PRODUCTS BURNABY BC POWER PRODUCTS DISTRIBUTOR BC RV RV SOLAR MOUNTS BC SOLAR AND POWER CONVERSION PRODUCTS BURNABY BC SOLAR CABIN PACKAGES SOLAR CHARGE CONTROLLER SOLAR CHARGERS SOLAR INVERTER BC SOLAR INVERTERS BC SOLAR MOUNTING HARDWARE SOLAR MOUNTING HARDWARE BC SOLAR OFF-GRID CABIN SOLAR ON-GRID PACKAGES BC SOLAR ON-GRID PACKAGES SOLAR PANEL SALES CANADA SOLAR PANELS BC SOLAR PANELS BURNABY BC SOLAR PANELS FOR CABIN SOLAR POWER FOR CABINS BC SOLAR POWER PRODUCTS DISTRIBUTOR BC SOLAR RV PACKAGES SOLAR RV PACKAGES BC
Whether you want to charge your electric vehicle at home, at work, or at a public station, one thing is essential: the outlet of the charging station has to match the outlet of your car. More precisely, the cable that connects the charging station with your vehicle has to have the right plug on both ends. Makes sense, right? Four types of plugs exist, two for alternating current (AC) which allow charging up to 43 kW, and two for direct current (DC) which allows fast-charging up to 350 kW.
In Europe, the type 2 AC charger, a triple-phase plug, is the standard and most charging stations have a type 2 outlet. But watch out, some charging stations have a fixed cable. An attached cable can make a lot of sense at places where you always charge the same car, like at home or at a fixed employee parking spot. It’s convenient because you don’t have to carry around a cable in your vehicle. Be aware that if you charge your car at a public charging station with a fixed cord, you’ll have to check if the attached cable fits into your car’s socket. in Europe and have a European car like the Renault ZOE, you can charge it at a public station using a charging cable with type 2 plugs at both ends (type 2 to type 2). The maximum speed might be up to 43 kW.
Now, what do you do if you live in Europe and drive an Asian car like the Nissan LEAF? Well, you need a cable that connects the type 2 plug of the charging station with the type 1 outlet of your vehicle (type 2 to type 1). The maximum speed will be up to 7.4 kW.